Water restriction increases renal inner medullary manganese superoxide dismutase (MnSOD).
نویسندگان
چکیده
Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.
منابع مشابه
Role of reduced manganese superoxide dismutase in ischemia-reperfusion injury: a possible trigger for autophagy and mitochondrial biogenesis?
Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hy...
متن کاملManganese superoxide dismutase attenuates Cisplatin-induced renal injury: importance of superoxide.
Cisplatin is a potent chemotherapeutic agent that is used to treat many human malignancies. Unfortunately, in addition to side effects such as ototoxicity, anaphylaxis, and bone marrow suppression, a significant percentage of patients receiving cisplatin develop severe nephrotoxicity. Mitochondrial dysfunction that is mediated via the generation of reactive oxygen species has been implicated in...
متن کاملLC-MS/MS Analysis Unravels Deep Oxidation of Manganese Superoxide Dismutase in Kidney Cancer
Manganese superoxide dismutase (MNSOD) is one of the major scavengers of reactive oxygen species (ROS) in mitochondria with pivotal regulatory role in ischemic disorders, inflammation and cancer. Here we report oxidative modification of MNSOD in human renal cell carcinoma (RCC) by the shotgun method using data-dependent liquid chromatography tandem mass spectrometry (LC-MS/MS). While 5816 and 5...
متن کاملIncreased superoxide formation induced by irradiation preconditioning triggers kidney resistance to ischemia-reperfusion injury in mice.
One of the obstacles in irradiation therapy is cytoresistance, acquired by activation of self-defense systems, such as antioxidant or molecular chaperone systems, to cope with stress. We investigated whether irradiation preconditioning (IP) rendered resistance of the kidney against subsequent ischemia-reperfusion (I/R) and attempted to elucidate any such protective mechanisms. Mice were irradia...
متن کاملOrgan-specific responses of total body irradiated doxycycline-inducible manganese superoxide dismutase Tet/Tet mice.
BACKGROUND/AIM We evaluated doxycycline-inducible manganese superoxide dismutase (MnSOD(tet/tet)) mice after 9.25 Gy total-body irradiation (TBI) or 20 Gy thoracic irradiation. MATERIALS AND METHODS Six-week-old MnSOD(tet/tet) or control C57BL/6NHsd mice on or off doxycycline (doxy) in food received 9.25 Gy TBI, were sacrificed at day 19 and bone marrow, brain, esophagus, heart, intestine, ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 5 شماره
صفحات -
تاریخ انتشار 2012